TrenchBoot DRTM features for AMD platforms

Open Source Firmware Conference 2020

Piotr Król
• coreboot contributor and maintainer
• Conference speaker and organizer
• Trainer for military, government and industrial organizations
• Former Intel BIOS SW Engineer

• 12yrs in business
• 6yrs in Open Source Firmware
• C-level positions in
• NLNet
• Daniel P. Smith (Apertus Solutions)
• Andrew Cooper (Citrix)
• Amazing 3mdeb Embedded Firmware Team, especially:
 ○ Michał Żygowski
 ○ Krystian Hebel
 ○ Norbert Kamiński
Explain how TrenchBoot features can be leveraged on AMD-based platforms

- S-CRTM is challenging
- What is TrenchBoot and how it work
- What is Dasharo and how we use it to deploy TrenchBoot
- What operation improvements, security features and use cases modern OSF can provide for you
• **S-CRTM (Static-Code Root of Trust for Measurement)**
 - initial measurement established by static code component (e.g. SoC BootROM, read-only bootblock)
 - this code is typically not updatable
• Commercial use cases (Silicon Vendor Security Technologies):
 - Intel Boot Guard, AMD HVB, NXP HAB
 - Intel/IBV/UEFI Secure Boot
 - Microsoft BitLocker
• Open source use cases: coreboot+TrustedGRUB2, Dasharo+LUKS2
• Problems
 - requires reboot to reestablish trust
 - requires NDA with SV and skilled personnel to perform task
 - most hardware vendors do not implement it correctly
 - not standardized measurement information (event log)
 - over 20 keys involved (~5 just for Intel Boot Guard)
• Without correct S-CRTM further measurements have no value
• Diagram shows were S-CRTM starts and how it looks in the context of UEFI-based firmware boot process
 • **PCR[0-7]** - we have no knowledge what is exactly measured and where
 • despite TCG specs describe PCRs usage IBVs do not comply with standard
 • event log readability is questionable
<table>
<thead>
<tr>
<th>Vendor Name</th>
<th>ME Access</th>
<th>EC Access</th>
<th>CPU Debugging (DCI)</th>
<th>Boot Guard</th>
<th>Forced Boot Guard ACM</th>
<th>Boot Guard FPF</th>
<th>BIOS Guard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASUS VivoMini</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>MSI Cubi2</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Gigabyte Brix</td>
<td>Read/Write Enabled</td>
<td>Read/Write Enabled</td>
<td>Enabled</td>
<td>Measured Verified</td>
<td>Enabled (FPF not set)</td>
<td>Not Set</td>
<td>Disabled</td>
</tr>
<tr>
<td>Dell</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Lenovo ThinkCentre</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>HP EliteDesk</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Intel NUC</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Apple</td>
<td>Read Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

Alex Matrosov 2017: BETRAYING THE BIOS: WHERE THE GUARDIANS OF THE BIOS ARE FAILING
Leverage open source **D-RTM (Dynamic Root of Trust for Measurement)** implementation

Let's forget about S-CRTM complexity and NDAs with SV

Solves measured/verified boot continuation problem for legacy systems
 - it was solved before by no longer maintained TrustedGRUB2
 - INT 1Ah BIOS interface support in bootloader is required
 - with TrenchBoot no INT 1Ah interface nor TrustedGRUB2 is needed

Non-UEFI-aware measured boot using coreboot, GRUB and TPM2.0: https://3mdeb.com/events/#Linux-Plumbers-Conference-2019
• Bootloaders
 ○ GRUB2
 ○ iPXE

• Operating systems
 ○ NixOS
 ○ OE/Yocto (meta-trenchboot)

• Hypervisors
 ○ Xen

https://blog.3mdeb.com/tags/trenchboot/
Legacy boot stack

- CPU (AMD GX-412TC)
- DRTM (SKINIT)
- Firmware (Dasharo Firewall)
- DCE (TrenchBoot Landing Zone)
- DLME (OE/Yocto Linux)
- Payload (SeaBIOS)
- TPM (Infineon SLB9556)
- Bootloader (GRUB2)
- meta-pcengines
- meta-trenchboot
- meta-safeboot

Alternative DLME would be Xen built using OE/Yocto with OPNSense in VM

UEFI boot stack

- CPU (AMD GX-412TC)
- DRTM (SKINIT)
- Firmware (Dasharo Firewall)
- DCE (TrenchBoot Landing Zone)
- DLME (OE/Yocto Linux)
- Payload (UEFIPayload)
- TPM (Infineon SLB9556)
- Bootloader (GRUB2)
- meta-pcengines
- meta-trenchboot
- meta-safeboot

Open Source Firmware Conference 2020
CC BY | Piotr Król
Dasharo is a set of productized services, Open Core, and SaaS products which help to provide scalable, modular, easy to combine Open Source BIOS, UEFI, and Firmware solutions.

TrenchBoot is integrated and maintained but Dasharo components in various BIOS and firmware solutions.
• Firewall-targeted ecosystem for coreboot-based solutions which support TrenchBoot for AMD and Intel platforms
• Reference Platform: PC Engines apu2
• Hardware Compatibility List: Protectli FW2/4/6, PC Engines apu2/3/4/6
• Binaries available here: https://boot.3mdeb.com/OSFC2020/

Legacy boot stack
• Verified and Measured Boot
• Fast boot
• Network boot (iPXE)
• TPM Menu

UEFI boot stack
• UEFI Secure Boot
• Setup menu
• Boot order manager
• Network boot (iPXE)
• TPM and OPAL Menu
• Open Source implementation of AMD Secure Loader Block (SLB)
• LZ supports coreboot and UEFI-based firmware
• LZ supports TPM1.2 (SHA1) and TPM2.0 (SHA256)
• LZ CI/CD and validation infrastructure was added
• TPM Event Log support
• Multiboot2 support
• IOMMU support - more about that at the end of presentation
• Reference bootloader for TrenchBoot implementation
• Short history of AMD patches
 ◦ Dec 2019: the first version of working AMD patches
 ◦ May 2020: the first version of working Intel TXT patches
 ◦ Nov 2020: second version of AMD patches
• GRUB2 with patches supporting AMD were tested on PC Engines apu2:
 ◦ coreboot+GRUB2 Payload and coreboot+UEFI Payload
 ◦ SPI and SSD storage

As part of TrenchBoot project iPXE support was developed
Main purpose was to simplify TrenchBoot testing and development cycle
It can be easily checked if your AMD platform supports D-RTM, just go to iPXE shell

- module https://boot.3mdeb.com/tb/lz_header.bin
- kernel https://boot.3mdeb.com/tb/bzImage console=ttyS0,115200
- initrd https://boot.3mdeb.com/tb/test_initramfs.cpio
- boot

HTTP(S) support depending on features built-in iPXE

https://blog.3mdeb.com/2020/2020-06-01-ipxe_lz_support/
OE/Yocto produce ready to use, minimal system image with updates and tools to provision security features

- meta-trenchboot
 - TrenchBoot Landing Zone
 - Linux v5.5 with TrenchBoot patches
 - tpm2-tools

- meta-safeboot - with D-RTM patches for UEFI Secure Boot provisioning
- meta-swupdate - layer for image-based system update using SWUpdate

- NixOS - Linux distro with focus on being reproducible, declarative and reliable

https://github.com/3mdeb/meta-trenchboot
• **Deployment** - use HTTPS network boot to safely deploy firmware and operating system of your choice
• **Provisioning** - use safeboot to leverage UEFI Secure Boot and TPM sealing for disk encryption key
• **Boot** - use various boot stacks and its security features depending on your needs
• **Firmware update** - leverage LVFS/fwupd public/on-premise infrastructure or use manual method
• **System update** - leverage OE/Yocto SWUpdate for reliable OS/hypervisor update
• **Recovery** - recover from system and firmware failure through minimal Linux booted from SPI flash
• **Attestation** - attest locally or remotely selected set of PCRs
• **Maintenance** - apply best practices to firmware maintenance
- Basic use case
 - HTTPS over iPXE using https://boot.3mdeb.com
 - `flashrom` for firmware
 - `bmaptool` for OE/Yocto image
- Dasharo Firewall deployment demo
 - https://asciinema.org/a/374149?cols=100&rows=30&size=big
- safeboot provisioning demo
 - https://asciinema.org/a/374153?cols=100&rows=30&size=big
- Future plans with leveraging TrenchBoot
 - trusted deployment and provisioning
 - trusted diagnostics tools
• Legacy and UEFI boot path
• Verified boot with S-CRTM in read-only boot block
• UEFI Secure Boot support
• Demo: https://asciinema.org/a/374153?cols=100&rows=30&size=big
Dasharo OS/hypervisor update

- encrypted and signed updates
- dual image update using SWUpdate
- power-fail safe
- SPI built-in minimal Heads-based Linux kernel with basic tools for flashing and signatures verification
- UEFI: https://asciinema.org/a/374014?cols=100&rows=30&size=big
- Legacy: https://asciinema.org/a/374012?cols=100&rows=30&size=big
Boot to Dom0

```bash
tpm-attest quote <nonce> <pcrs_list> > quote.tgz
cp quote.tgz <attestation_server>
```

Boot Attestation Server

```bash
tpm-attest verify quote.tgz <nonce>
```

- Attestation of S-RTM and D-RTM PCRs
- Dasharo Attestation Server (WIP)
- TPM Event Log support for Legacy and UEFI (WIP)
- Demo: https://asciinema.org/a/374172?cols=100&rows=30&size=big
- BIOS and Firmware Releases/Validation/Maintenance as a Service
Over 150 unique test cases validating various Dasharo generic and customer specific features
• **DMA protection** - because of AMD SoC issues there is no guarantee that IOMMU would be safely initialized, unless we know it was not used before SKINIT
 - modern CPU families may challenge 64k LZ size limit in light of IOMMU support requirements
 - IOMMU will complicate Late Launch scenario for TrenchBoot

• **SMM Supervisor** - there is need for protection against attacks from SMI, AMD recently developed that solution for Microsoft Secured-core PC

• **fTPM implementation** - supports only CRB (*Command Response Buffer*) interface not compliant to PC Profile
 - there are no information what interface we dealing with, but it seem to match Mobile CRB specification
 - this force us to use dTPM

• **ARM, OpenPOWER and RISC-V support**
Dasharo is under heavy development
If you are interested about Dasharo and TrenchBoot related products Feel free to contact us through email contact@3mdeb.com or our websites

https://3mdeb.com/contact
https://dasharo.com
Q&A