AMD TrenchBoot support in GRUB2

GRUB mini-summit 2020

Piotr Król
Piotr Król
3mdeb Founder

- coreboot contributor and maintainer
- Conference speaker and organizer
- Trainer for military, government and industrial organizations
- Former Intel BIOS SW Engineer
- 12yrs in business
- 6yrs in Open Source Firmware
- C-level positions in

GRUB mini-summit 2020
CC BY | Piotr Król
• NLNet
• Daniel P. Smith (Apertus Solutions)
• Andrew Cooper (Citrix)
• Amazing 3mdeb Embedded Firmware Team, especially:
 ○ Michał Żygowski
 ○ Krystian Hebel
 ○ Norbert Kamiński
Practical demonstration of TrenchBoot integration leveraging GRUB2 on AMD-based platforms

- Difference between S-CRTM and D-RTM
- GRUB2 role in TrenchBoot
- Feature-rich system architecture that leverages GRUB2 and TrenchBoot
- Dasharo Firewall firmware, GRUB2 and OE/Yocto
- System features
- Demo
• **S-CRTM (Static-Code Root of Trust for Measurement)**
 - initial measurement established by static code component (e.g. SoC BootROM, read-only bootblock)
 - this code is typically not updatable
• Commercial use cases (Silicon Vendor Security Technologies):
 - Intel Boot Guard, AMD HVB, NXP HAB
 - Intel/IBV/UEFI Secure Boot
 - Microsoft BitLocker
• Open source use cases: coreboot+TrustedGRUB2, Dasharo+LUKS2
• Problems
 - requires reboot to reestablish trust
 - requires NDA with SV and skilled personnel to perform task
 - most hardware vendors do not implement it correctly
 - not standardized measurement information (event log)
 - over 20 keys involved (~5 just for Intel Boot Guard)
• Without correct S-CRTM further measurements have no value
- Diagram shows where S-CRTM starts and how it looks in the context of UEFI-based firmware boot process
- **PCR[0-7]** - we have no knowledge what is exactly measured, event log readability would be discussed later
 - those PCRs are mentioned as an example, since despite TCG spec every vendor seems to interpret the usage of particular PCRs differently
- There is no standardization around TPM event log creation
Intel Boot Guard

<table>
<thead>
<tr>
<th>Vendor Name</th>
<th>ME Access</th>
<th>EC Access</th>
<th>CPU Debugging (DCI)</th>
<th>Boot Guard</th>
<th>Forced Boot Guard ACM</th>
<th>Boot Guard FPF</th>
<th>BIOS Guard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASUS VivoMini</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>MSI Cubi2</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Gigabyte Brix</td>
<td>Read/Write Enabled</td>
<td>Read/Write Enabled</td>
<td>Enabled</td>
<td>Measured Verified</td>
<td>Enabled (FPF not set)</td>
<td>Not Set</td>
<td>Disabled</td>
</tr>
<tr>
<td>Dell</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Measured Verified</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Lenovo ThinkCentre</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>HP Elitedesk</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Intel NUC</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Apple</td>
<td>Read Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

Alex Matrosov 2017: BETRAYING THE BIOS: WHERE THE GUARDIANS OF THE BIOS ARE FAILING
• Leverage open source **D-RTM (Dynamic Root of Trust for Measurement)** implementation
• Let's forget about S-CRTM complexity and NDAs with SV
• Solves measured/verified boot continuation problem for legacy systems
 ○ it was solved before by no longer maintained TrustedGRUB2
 ○ INT 1Ah BIOS interface support in bootloader is required
 ○ with TrenchBoot no INT 1Ah interface nor TrustedGRUB2 is needed

Non-UEFI-aware measured boot using coreboot, GRUB and TPM2.0: https://3mdeb.com/events/#Linux-Plumbers-Conference-2019
Reference bootloader for TrenchBoot implementation

Short history of AMD patches
- Dec 2019: the first version of working AMD patches
- May 2020: the first version of working Intel TXT patches
- Nov 2020: second version of AMD patches

GRUB2 with patches supporting AMD were tested on PC Engines apu2:
- coreboot+GRUB2 Payload and coreboot+UEFI Payload
- SPI and SSD storage

- Legacy boot path
- OE/Yocto builds full disk image
- Dasharo Firewall consist of coreboot+GRUB2+TrenchBoot Landing Zone
 - coreboot builds SPI binary
Dasharo is a family of BIOS firmware products based on Open Source components.

Dasharo Firewall has 2 flavours:
- Legacy boot path: coreboot+GRUB2+TrenchBoot LZ
- UEFI boot path: coreboot+TianoCore/UEFI

Hardware Compatibility List:
- PC Engines apu2/3/4/6
- Protectli FW2/4/6
- any other platform that supports coreboot

coreboot v4.12:
- Verified Boot
- Recovery partition with minimal Linux in SPI
- Optional: S-CRTM with read-only bootblock using Adesto SPI features
Dasharo Firewall (Swiss Gambit)

- UEFI Secure Boot
- Setup menu
- Boot order manager
- Network boot (iPXE)
- TPM and OPAL Menu
- HDD password
- GRUB2 v2.05 with recent TrenchBoot patches for AMD
- Legacy build path
 - integrated in SPI binary
 - built using coreboot build system
- UEFI build path
 - stored on disk
 - built using OE/Yocto
- Config for UEFI looks as follows:
• Produce ready to use, minimal system image with tools to provision security features
• TrenchBoot Landing Zone v0.3.0 (meta-trenchboot)
• Linux v5.5 with TrenchBoot patches (meta-trenchboot)
• tpm2-tools 5.0-rc0 (meta-measured)
• safeboot with D-RTM patches for UEFI Secure Boot provisioning
• update using SWUpdate (meta-swupdate)
• Deployment
 ◦ HTTPS over iPXE using https://boot.3mdeb.com
 ◦ for firmware
 ◦ for OE/Yocto image
• Provisioning (UEFI)
 ◦ safeboot scripts
• Boot
 ◦ Legacy and UEFI boot path
 ◦ Verified boot with S-CRTM in read-only boot block
 ◦ UEFI Secure Boot support
• Dasharo firmware update
 ◦ regular tools: gpg and flashrom
 ◦ LVFS/fwupd
• OE/Yocto system update
 ◦ encrypted and signed updates
 ◦ dual image update using SWUpdate
 ◦ power-fail safe
• Self-decrypting rootfs through LUKS2 and TPM2.0 secret unsealing
• Recovery
 ○ SPI built-in minimal Linux kernel with basic tools for flashing and signatures verification
• Attestation
 ○ Attestation of S-RTM and D-RTM PCRs
 ○ TPM Event Log support (Legacy)
• Maintenance
 ○ public regression test results
 ○ public CI/CD with validated and signed artifacts
Boot and Event Log Demo

- Legacy TrenchBoot boot flow: https://asciinema.org/a/371576?size=big&speed=0.5
- UEFI TrenchBoot boot flow: https://asciinema.org/a/371870?size=big&speed=0.5
- UEFI TrenchBoot provisioning: https://asciinema.org/a/371872?size=big&speed=0.5
We provide customized, trustworthy and updatable images for Firewalls and Office Workstations

We are professional training providers in mentioned technologies

Feel free to contact us through email or our websites

https://3mdeb.com/contact
https://training.3mdeb.com
Q&A